Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 17(1): 15-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815607

RESUMO

The purpose of the study was to compare measured air and surface concentrations after application of biocidal spray products with concentrations simulated with the ConsExpo Web spray simulation tool. Three different biocidal spray products were applied in a 20 m3 climate test chamber with well-controlled environmental conditions (22 ± 1 °C, 50 ± 2% relative humidity, and air exchange rate of 0.5 h-1). The products included an insect spray in a pressurized spray can, another insect spray product, and a disinfectant, the latter two applied separately with the same pumped spray device. The measurements included released particles, airborne organic compounds in both gas and particle phase, and surface concentrations of organic compounds on the wall and floor in front of the spraying position and on the most remote wall. Spraying time was a few seconds and the air concentrations were measured by sampling on adsorbent tubes at 9-13 times points during 4 hr after spraying. The full chamber experiment was repeated 2-3 times for each product. Due to sedimentation the concentrations of the particles in air decayed faster than explained by the air exchange rate. In spite of that, the non-volatile benzalkonium chlorides in the disinfectant could be measured in the air more than 30 min after spraying. ConsExpo Web simulated concentrations that were about half of the measured concentrations of the active substances when as many as possible of the default simulation parameters were replaced by the experimental values. ConsExpo Web was unable to simulate the observed faster decay of the airborne concentrations of the active substances, which might be due to underestimation of the gravitational particle deposition rates. There was a relatively good agreement between measured surface concentrations on the floor and calculated values based on the dislodgeable amount given in the selected ConsExpo Web scenarios. It is suggested to always supplement simulation tool results with practical measurements when assessing the exposure to a spray product.


Assuntos
Desinfetantes/análise , Exposição Ocupacional/estatística & dados numéricos , Aerossóis/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , Inseticidas/análise , Modelos Estatísticos
2.
Materials (Basel) ; 12(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698885

RESUMO

Manufactured nanomaterials (MNMs) often have a surface-chemical modification in order to tailor their physicochemical properties, including also powder properties and miscibility. Surface-chemical modifications may influence the toxicological properties of the MNM, but the specific chemistry and extent are rarely described in detail in suppliers' technical data sheets. Chemical and quantitative information on any surface-chemical treatment, coating and functionalization are required for chemicals registration in Europe. Currently there is no globally accepted and documented approach to generate such data. Consequently, there is a continued research need to establish a structured approach to identify and quantify surface-chemical modifications. Here we present a tiered approach starting with screening for mass-loss during heating in a furnace or thermogravimetric analysis (TGA) followed by solvent extraction, and analysis by several mass spectrometry (MS) techniques depending on the target analytes. Thermal treatment was assumed to be able to quantify the amount of organic coating and MS was used to identify the extractable organic coatings after pressurized liquid extraction (PLE) using methanol at 200 °C. Volatile organic compounds in extracts were identified with gas chromatography and MS (GC-MS), non-volatile organic compounds with liquid chromatography MS (LC-MS), and polymeric compounds with matrix-assisted laser desorption ionization time-of-flight MS (MALDI-TOF-MS). The approach was demonstrated by analysis of 24 MNM, comprising titanium dioxide, synthetic amorphous silica, graphite, zinc oxide, silver, calcium carbonate, iron oxide, nickel-zinc-iron oxide, and organoclay. In extracts of 14 MNMs a range of organic compounds were identified and the main groups were silanes/siloxanes, fatty acids, fatty acid esters, quaternary ammonium compounds and polymeric compounds. In the remaining 10 MNMs no organic compounds were detected by MS, despite the fact an organic coating was indicated by TGA.

3.
ALTEX ; 35(1): 26-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28817164

RESUMO

Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.


Assuntos
Aerossóis/toxicidade , Técnicas In Vitro/métodos , Exposição por Inalação/efeitos adversos , Alternativas aos Testes com Animais , Animais , Humanos , Pulmão/efeitos dos fármacos , Camundongos , Surfactantes Pulmonares/toxicidade
4.
J Occup Med Toxicol ; 12: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234454

RESUMO

BACKGROUND: In most reported cases of lung trauma with water proofing products, volatile organic compounds (VOC) have a prominent role. Here we report on a case involving ten workers exposed to a sprayed product containing nanoparticles in a water solution with only a few percent VOC. CASE PRESENTATION: Ten workers suffered from respiratory symptoms following spray impregnation of hardwood furniture using a waterproofing product that contained positively charged fluorinated acrylate copolymer solid cores with a median diameter of 70 nm (1.3 w%) in aqueous suspension with 3.3 w% VOC and 0.3 w% quaternary ammonium. The worker who applied one liter of the product in a wood workshop, using an air mix spray gun, did not report any health complaints. Another worker, who entered the workshop 3 h later and had rolled and smoked two cigarettes, was hospitalized with severe chemical pneumonitis. A chest X-ray (CXR) showed bilateral infiltrative impairment in the lower lobe regions. On the next day a second CXR showed increased patchiness marking in all fields. A high-resolution Computer Tomography (CT)-scan demonstrated extensive bilateral areas of ground-glass opacities predominantly in the lower regions of the upper lobes, the right middle lobe and the apical regions of the lower lobes, compatible with severe chemical pneumonitis. On the following morning, nine workers in an adjacent workplace in the same building, experienced dry cough, chest tightness and substernal pain upon physical exercise. Reconstruction of the spray application in a climate chamber confirmed trimethyl silanol, glycol ethers and fluoroalkenes in the gas phase. Immediately after the spray application, aerosols were observed at a maximum concentration of 6.3 × 104 cm-3. Mass concentrations were 0.095 and 10 mg/m3 in the size ranges 5.6-560 nm and 0.22-30 µm, respectively, decreasing to less than 10 µg/m3 in both size ranges after 15 h. CONCLUSION: The hospitalized worker had smoked cigarettes contaminated with fluoropolymers which is a plausible explanation for the lung trauma. Respiratory symptoms in the nine workers may be caused by inhalation of particles that became airborne by resuspension from surfaces when workers entered the adjacent workplace the next day. A contribution from VOC appears less likely because measurements and modelling showed that concentrations in the mg/m3 range could have occurred only if the building was assumed to be completely airtight.

5.
J Immunotoxicol ; 13(6): 793-803, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27434663

RESUMO

Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.


Assuntos
Anti-Inflamatórios/imunologia , Cicloexenos/imunologia , Hipersensibilidade/imunologia , Irritantes/imunologia , Pulmão/metabolismo , Ozônio/imunologia , Pneumonia/imunologia , Terpenos/imunologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Animais , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Imunoglobulina E , Limoneno , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Rapid Commun Mass Spectrom ; 29(11): 1080-6, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26044276

RESUMO

RATIONALE: Inhaled nanoparticles may cause adverse effects due to inactivation of lung surfactants. We have studied how three different nanoparticles interact with dipalmitoyl-phosphatidylcholine (DPPC), the main component in lung surfactant. METHODS: DPPC in solution was mixed with a suspension of nanoparticles, both in organic solvent, and allowed to interact for 40 min under conditions partly resembling the alveolar lining. Nanoparticles were isolated by centrifugation, washed, and re-suspended in ethanol/water 1:1 (v/v). The resulting solution was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) using dihydroxybenzoic acid as matrix. RESULTS: The developed methodology was successfully applied for quantitative detection of phospholipid lung surfactant bound to three different types of nanoparticles. Titanium dioxide nanoparticles had a strong affinity for binding of lipid lung surfactant in contrast to pristine and methylated silica nanoparticles. When the concentration of lipid surfactant was raised in the reaction mixture, the titanium dioxide nanoparticles showed an apparently non-linear binding process. CONCLUSIONS: This work demonstrates that MALDI-TOFMS can be used for direct determination of the binding of surfactant lipids to nanoparticles and represents an important initial step towards a simple and quantitative in vitro method for assessment of interactions of nanoparticles with lung surfactants.

7.
ALTEX ; 32(2): 101-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25651757

RESUMO

Impregnation spray products are used for making surfaces water and dirt repellent. The products are composed of one or more active film-forming components dissolved or suspended in an appropriate solvent mixture. Exposure to impregnation spray products may cause respiratory distress and new cases are reported frequently. The toxicity appears to be driven by a disruption of the pulmonary surfactant film, which coats the inside of the lungs. Due to the complex chemistry of impregnation spray products, it is impossible to predict if inhalation of an aerosolized product is toxic in vivo. The aim of this study was to evaluate whether disruption of the pulmonary surfactant film can be used as a predictor of the toxic effects in vivo. Nine impregnation products with various chemical compositions were selected for testing and the main constituents of each product, e.g., solvents, co-solvents and film-forming compounds, were identified by mass spectrometry. We used a capillary surfactometry method to assess disruption of pulmonary surfactant function in vitro and a mouse model to evaluate acute respiratory toxicity during inhalation. Concentration-response relationships were successfully determined both in vitro and in vivo. The true positive rate of the in vitro method was 100%, i.e. the test could correctly identify all products with toxic effects in vivo, the true negative rate was 40%. Investigation of inhibition of the pulmonary surfactant system, e.g. by capillary surfactometry, was found useful for evaluation of the inhalation toxicity of impregnation spray products and thus may reduce the need for animal testing.


Assuntos
Aerossóis/toxicidade , Técnicas In Vitro/métodos , Exposição por Inalação , Alternativas aos Testes com Animais , Animais , Pulmão/efeitos dos fármacos , Camundongos , Valor Preditivo dos Testes , Surfactantes Pulmonares/toxicidade
8.
Toxicol Sci ; 140(2): 436-44, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24863969

RESUMO

Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products.


Assuntos
Pulmão/efeitos dos fármacos , Nanoestruturas , Animais , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Surfactantes Pulmonares/antagonistas & inibidores , Siloxanas/toxicidade
9.
Toxicol Sci ; 137(1): 179-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097669

RESUMO

A number of cases of pulmonary injury by use of aerosolized surface coating products have been reported worldwide. The aerosol from a commercial alcohol-based nanofilm product (NFP) for coating of nonabsorbing surfaces was found to induce severe lung damage in a recent mouse bioassay. The NFP contained a 1H,1H,2H,2H-perfluorooctyl trialkoxysilane (POTS) and the effects were associated with the hydrolyzed forms of the silane; increase in hydrolyzation resulted in faster induction of compromised breathing and induction of lung damage. In this study, the impact of the solvent on the toxicity of POTS has been investigated. BALB/cA mice were exposed to aerosolized water-based NFPs containing POTS, and solutions of hydrolyzed POTS in methanol, ethanol, and 2-propanol, respectively. No acute respiratory effect was observed at exposure concentrations up to 110 mg/m³ with an aqueous solution of POTS. However, exposure to POTS in methanol resulted in a decrease of the tidal volume--an effect that did not resolve within the recovery period. After 27 min of exposure, the tidal volume had decreased by 25%, indicating partial alveolar collapse. For POTS in ethanol and 2-propanol, a 25% reduction of the tidal volume was observed after 13 and 9 min, respectively; thus, the tidal volume was affected by increase of the chain length. This was confirmed in vitro by investigating lung surfactant function after addition of POTS in different solvents. The addition of vaporized methanol, 2-propanol, or acetone to aerosolized POTS in methanol further exacerbated the tidal volume reduction, demonstrating that the concentration of vaporized solvent participated in the toxicity of POTS.


Assuntos
Fluorocarbonos/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas , Respiração/efeitos dos fármacos , Silanos/toxicidade , Solventes/toxicidade , 2-Propanol/toxicidade , Aerossóis , Animais , Etanol/toxicidade , Fluorocarbonos/química , Hidrólise , Exposição por Inalação , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Metanol/toxicidade , Camundongos , Tamanho da Partícula , Fosfolipídeos/química , Surfactantes Pulmonares/química , Silanos/química , Solventes/química , Volume de Ventilação Pulmonar/efeitos dos fármacos , Fatores de Tempo , Volatilização
10.
J Am Soc Mass Spectrom ; 24(7): 1090-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666602

RESUMO

Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/z 139 to ca. 1000 in the positive mode and m/z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

11.
Anal Chem ; 85(1): 28-32, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23206196

RESUMO

A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection of mixtures of common volatile organic compounds. Amounts down to ca. 0.5 ng (on column) could be detected for most compounds and with a chromatographic performance comparable to that of GC/EIMS. In the positive mode, LTP ionization resulted in a compound specific formation of molecular ions M(+•), protonated molecules [M + H](+), and adduct ions such as [(M + O) + H](+) and [M + NO](+). The ion patterns seemed unique for each of the analyzed compound classes and can therefore be useful for identification of functional groups. A total of 20 different compounds within 8 functional groups were analyzed.

12.
J Am Soc Mass Spectrom ; 23(10): 1670-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875334

RESUMO

Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct comparison of the two methods: Images were recorded with the individual rows alternating between EASI and DESI, yielding a separate image for each technique recorded under perfectly similar conditions on the same sample. EASI works reliably for imaging of all samples, but the choice of spray solvent and flow rate is more critical in tissue imaging with EASI than with DESI. The overall sensitivity of EASI is, in general, slightly lower than that of DESI, and the representation of the dynamic range is different in images of the two techniques for some samples. However, for abundant compounds, EASI works well, resulting in images of similar quality as DESI. EASI can thus be used in imaging experiments where the application of high voltage is impractical or undesirable. The present study is in its nature also a comparison of the characteristics of the two techniques, showing results also applicable for non-imaging work, with regards to sensitivity and experimental conditions.


Assuntos
Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Química Encefálica , Corantes/química , Hypericum/química , Íons/química , Masculino , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(25): 2527-32, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21803007

RESUMO

Circadian disruption can have several possible health consequences, but is not well studied. In order to measure circadian disruption, in relation to shift or night work, we developed a simple and sensitive method for the simultaneous determination of melatonin, cortisol and testosterone in human saliva. We used liquid-liquid extraction (LLE) followed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS) recorded in positive ion mode. Saliva samples were collected by spitting directly into tubes and 250 µL were used for analysis. The limits of detection were 4.1 pmol/L, 0.27 nmol/L and 10.8 pmol/L for melatonin, cortisol, and testosterone, respectively. The developed method was sensitive enough to measure circadian rhythms of all 3 hormones in a pilot study among four healthy volunteers. It can therefor be used to study the impact of night work and working in artificial light on the workers circadian rhythms. To our knowledge this is the first LC-ESI-MS/MS method for simultaneous determination of salivary melatonin, cortisol and testosterone.


Assuntos
Cromatografia Líquida/métodos , Hidrocortisona/análise , Melatonina/análise , Saliva/química , Espectrometria de Massas em Tandem/métodos , Testosterona/análise , Adulto , Ritmo Circadiano , Estabilidade de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
14.
J Mass Spectrom ; 46(4): 402-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21438090

RESUMO

Three different and recently developed desorption ionization techniques, transmission-mode desorption electrospray ionization (TM-DESI), low temperature plasma (LTP) ionization and nano-assisted laser desorption ionization (NALDI), are compared with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) for the analysis of two nanofilm products (NFPs) for surface coating, which contain hydrolysates and condensates of organo-functionalized silanes. The NFPs were characterized in different states from the liquid phase to the fully formed surface film. The LTP spectra were dominated by the silanes, while the corresponding di-, tri- and tetrasiloxanes were common in ESI, APCI and TM-DESI. This indicates readily condensation of the silanes during the ESI and APCI ionization processes leading to the observed siloxanes. NALDI showed larger siloxane structures than the other techniques, indicating film formation on the NALDI target. Real-time monitoring of the film formation on a glass surface by LTP showed a decreasing abundance of the silanes, while the abundances of the di-, tri and tetrasiloxanes increased significantly within the first 100 s. LTP was superior in showing the non-reacted content of the NFPs, while ESI, APCI and TM-DESI were characterized by artefact formation of siloxanes. NALDI was ideal for showing the siloxane structures of the formed film. The applicabilities of each of the ionization techniques were examined, showing the advantage of utilizing more than one ionization technique for the analysis of reactive species.


Assuntos
Espectrometria de Massas/métodos , Nanoestruturas/química , Silanos/química , Aerossóis/química , Fenômenos Químicos , Nebulizadores e Vaporizadores , Temperatura
15.
Rapid Commun Mass Spectrom ; 24(23): 3441-6, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21072800

RESUMO

The progress of an on-surface polymerization process involving alkyl and perfluoroalkyl silanes and siloxanes was monitored in real-time via easy ambient sonic spray ionization mass spectrometry (EASI-MS). When sprayed on surfaces, the organosilicon compounds present in commercially available nanofilm products (NFPs) react by condensation to form a polymeric coating. A NFP for coating of floor materials (NFP-1) and a second NFP for coating tiles and ceramics (NFP-2) were applied to glass, filter paper or cotton surfaces and the progress of the polymerization was monitored by slowly scanning the surface. Via EASI(+)-MS monitoring, significant changes in the composition of hydrolysates and condensates of 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane (NFP-1) and hexadecyl triethoxysilane (NFP-2) were observed over time. The abundances of the hydrolyzed species decreased compared with those of the non-hydrolysed species for both NFP-1 and NFP-2 and the heavier oligomers became relatively more abundant over a period of 15-20 min. A similar tendency favouring the heavier oligomers was observed via EASI(-)-MS. This work illustrates the potential of ambient mass spectrometry for the direct monitoring of polymerization reactions on surfaces.


Assuntos
Silanos/química , Siloxanas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Estrutura Molecular , Polimerização
16.
Chemosphere ; 80(11): 1377-86, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20594580

RESUMO

The use of nanofilm spray products (NFPs) has been associated with a number of severe cases of airway injuries; however, the causative agents are unknown. To identify possible causative agents, 10 products from three different suppliers have been analysed using two mass spectrometric methods: (1) ESI-MS and ESI-MS/MS; (2) GC-MS and GC-MS/MS. The 10 products could be classified into three groups (NFPs 1-3). NFP 1 and NFP 2 contained hydrolysates and condensates of the organo-functionalized silanes 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane and hexadecyl triethoxysilane, respectively. NFP 3 contained non-ionic detergents and abrasive as active ingredients. To verify the fluorosilane solution in NFP 1, a synthetic NFP 1 was prepared by hydrolysis and condensation of 1H,1H,2H,2H-perfluorooctyl triethoxysilane. After about 1month in acidic 2-propanol substitution of the ethoxy groups with isopropoxy groups had taken place and all silane was converted to disiloxanes, trisiloxanes and tetrasiloxanes.


Assuntos
Poluentes Atmosféricos/química , Espectrometria de Massas , Nanoestruturas/química , Silanos/química , Siloxanas/química
17.
Toxicol Sci ; 116(1): 216-24, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20348230

RESUMO

Exposures to two commercial nanofilm spray products (NFPs), a floor sealant (NFP 1) and a coating product for tiles (NFP 2), were investigated for airway irritation, airway inflammation, and lung damage in a mouse inhalation model. The particle exposure was characterized by particle number, particle size distribution, and gravimetric analysis. BALB/cJ mice were exposed for 60 min to the aerosolized products at 3.3-60 mg/m(3) (10(5)-10(6) fine particles/cm(3)) measured in the breathing zone of the mice. Lung inflammation and lung damage were assessed by study of bronchoalveolar lavage fluid (BALF) cytology, protein in BALF, and histology. Mass spectral analysis showed that NFP 1 and NFP 2 contained hydrolysates and condensates of a perfluorosilane and alkylsilane, respectively. NFP 1 induced a concentration-dependent decrease of the tidal volume lasting for at least 1 day. Exposure concentrations above 16.1 mg/m(3) (2.1 x 10(6) fine particles/cm(3)) gave rise to significant increases of protein level in BALF and reduced body weight, and histological examination showed atelectasis, emphysema, and hemorrhages. A narrow interval between the no-effect level (16.1 mg/m(3)) and the lethal concentrations (18.4 mg/m(3)) was observed. The alkylsilane-based product (NFP 2) had no effect at the concentrations studied. Experiments with different types of perfluorinated silanes and alkylsiloxanes showed that the toxic effects did not arise solely from the perfluorination. The number of free hydroxyl groups in the silanes/alkylsiloxanes was also critical for the toxicity.


Assuntos
Fluorocarbonos/toxicidade , Radical Hidroxila , Pulmão/efeitos dos fármacos , Nanopartículas , Animais , Fluorocarbonos/administração & dosagem , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos BALB C
18.
Environ Sci Technol ; 43(20): 7824-30, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921900

RESUMO

Here, we present emission data on VOCs and particles emitted during simulated use of four commercial nanofilm spray products (NFPs) used for making easy-to-clean or self-cleaning surfaces on floors, ceramic tiles, and windows. The aim was to characterize the emitted VOCs and to provide specific source strength data for VOCs and particles released to the airduring use of the products. Containers with NFP were mounted on a spray-stand inside a closed stainless steel chamber with no air exchange. NFPs were sprayed in amounts corresponding to 1 m2 surface toward a target plate at a distance of 35 cm. Released VOCs were measured by a combination of air sampling on Tenax TA adsorbent followed by thermal desorption GC/MS and GC/FID analysis and real time measurements using a miniature membrane inlet mass spectrometer. Particles were measured using a fast mobility particle sizer and an aerosol particle sizer. A number of VOCs were identified, including small alcohols, ketones and ethers, chlorinated acetones, a perfluorinated silane, limonene, and cyclic siloxanes. The number of generated particles was on the order of 3 x 10(8) to 2 x 10(10) particles/m3 per g sprayed NFP and were dominated by nanosize particles.


Assuntos
Nanopartículas/análise , Compostos Orgânicos Voláteis/análise , Ar/análise , Qualidade de Produtos para o Consumidor , Nebulizadores e Vaporizadores , Volatilização
19.
Chemosphere ; 76(4): 572-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19329138

RESUMO

The secondary ozonide (SOZ) of limonene is a potential indoor pollutant from the gas-phase limonene/ozone-reaction. A screening in the liquid phase was performed to investigate the yield and stability of SOZs from ten cyclic monoterpenes. They were cryo-ozonolyzed in pentane, and the reaction mixtures were analyzed with GC-MS with negative and positive chemical ionization and electron ionization. The investigated terpenes were: limonene, 4-carene, 3-carene, 2-carene, terpinolene, (+)-alpha-pinene, (-)-beta-pinene, isolimonene, sabinene and camphene. The only identified endo-SOZs were from: limonene, 3-carene, 4-carene and possibly isolimonene. Collision induced dissociation (CID) of the quasi-molecular-ions as a proxy measure of the stability of the pristine SOZs was investigated. LimoneneSOZ and 3-careneSOZ were found to be more stable than 4-careneSOZ and isolimoneneSOZ, which corresponded well to their relative yields. 3-careneSOZ was found to be a major product from the gas-phase ozonolysis.


Assuntos
Poluentes Atmosféricos/análise , Compostos Heterocíclicos/análise , Espectrometria de Massas/métodos , Monoterpenos/química , Poluentes Atmosféricos/química , Cicloexenos/química , Gases/química , Compostos Heterocíclicos/química , Limoneno , Ozônio/química , Terpenos/química
20.
Chemosphere ; 70(11): 2032-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17964632

RESUMO

Recent studies indicate that secondary ozonides of cyclic alkenes are formed in atmospheric reactions and may be relatively stable. The secondary ozonides (SOZs) of cyclohexene (1), 1-methylcyclohexene (2), 4-isopropyl-1-methylcyclohexene (3) and 4-isopropenyl-1-methylcyclohexene (limonene) (4) have been characterized by rapid gas chromatography electron ionization (EI), negative and positive chemical ionization (CI: ammonia, isobutane and methane) and collision-induced dissociation (CID) mass spectrometry. Both EI and positive CI spectra were found unsuitable for reproducible analysis. However, negative CI showed stable (M-H)(-) ions with minor fragmentation. CID of the (M-H)(-) ions resulted in simple and reproducible fragmentation patterns for all four SOZs with loss of m/z 18, 44 and 60, tentatively assigned as H(2)O, CO(2) and C(2)H(4)O(2) or CO(3), respectively. Thus, negative CI-MS-MS in combination with rapid gas chromatography is the preferred method for identification of secondary ozonides of cyclohexenes.


Assuntos
Poluentes Atmosféricos/análise , Cicloexenos/química , Compostos Heterocíclicos/análise , Poluentes Atmosféricos/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...